

Discovering the Perceptual Space of Natural Sounds from Similarity Judgments

Introduction

- Understanding how the rich acoustic world gives rise to multidimensional mental representations is a challenge for perceptual science
- How are human similarity judgments made between natural sounds?

Sound Textures

• Sound textures are sounds created by a superposition of many similar acoustic events

- However, it is unclear how statistics relate to perceptual similarity
- Model contains thousands of statistics

 \rightarrow how does each statistic contribute to perception?

Ariana Richardson, Bryan Medina, Jarrod Hicks, and Josh McDermott Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology

Data Collection

- Odd-one-out task to assess similarity
- Stimuli: 1080 2-second clips of sound textures
- Online data collection (N=117)

SOUND 1	SOUND	2	SOUND	3
Which sound	is the	odd or	ne out?	
SOUND 1				
SOUND 2				
SOUND 3				

Observer Model

- Measures pairwise distances between representations of sounds, assuming a metric
- Sound not contained in minimum distance pair is chosen as the odd-one-out

Model choices are compared to human choices • in odd-one-out task

Weights were adjusted to maximize agreement with human participants

Model Fitting

• Model captures much of explainable variance in human similarity judgments

 \rightarrow new perceptual metric for sounds • But fitted model remains well below noise ceiling

- -could be missing acoustic features
- -or semantic associations that influence humans

Conclusions

- We developed a signal-computable computational model to predict human similarity judgments for real-world sound textures
- Model captures much of explainable variance in similarity judgments, achieving 64% of the best possible accuracy given the noise in the data.
- Current model of texture does not completely explain human similarity judgments.

Future Directions

- Add additional learnable dimensions to capture possible semantic features
- Use metric to model texture streaming and memory confusions

