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[Introduction }
W
 Understanding how the rich acoustic 9}/‘

world gives rise to multidimensional
mental representations is a challenge for
perceptual science

* How are human similarity judgments
made between natural sounds?

[ Sound Textures ]

 Sound textures are sounds created by a
superposition of many similar acoustic events
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* Thought to be represented perceptually in the
form of time-averaged statistics

Auditory Texture Model

Sound Cochlear Envelope and Modulation
signal filtering compressive nonlinearity filtering
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similarity
e Model contains thousands of statistics

—>how does each statistic contribute to perception?

[ Data Collection }

Odd-one-out task to assess similarity
Stimuli: 1080 2-second clips of sound textures
Online data collection (N=117)

SOUND 1 SOUND 2 SOUND 3

Which sound is the odd one out?

SOUND 1
SOUND 2
SOUND 3

[Observer Model }
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 However, it is unclear how statistics relate to perceptual

Measures pairwise distances between
representations of sounds, assuming a metric

Sound not contained in minimum distance pair
is chosen as the odd-one-out

S1 and S2 have
the smallest
pairwise
distance!
A 4

Model choices are compared to human choices
in odd-one-out task

Model captures much of explainable variance in
human similarity judgments

-2 new perceptual metric for sounds

But fitted model remains well below noise ceiling
-could be missing acoustic features
-or semantic associations that influence humans
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Weights were adjusted to maximize agreement with human participants
weight texture measure compute choice compare to
statistics distances probability behavior
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[Results [Conclusmns }

* We developed a signal-computable
computational model to predict human
similarity judgments for real-world sound
textures

* Model captures much of explainable
variance in similarity judgments, achieving
64% of the best possible accuracy given the
noise in the data.

e Current model of texture does not
completely explain human similarity
judgments.

[ Future Directions }

 Add additional learnable dimensions to
capture possible semantic features

* Use metric to model texture streaming
and memory confusions



